基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对强噪声背景下的故障信号诊断问题,提出一种基于小波去噪和改进型总体经验模式分解算法(Ensemble Empirical Mode Decomposition,EEMD)包络解调分析的滚动轴承故障诊断方法.由于经验模态分解方法易产生虚假分量和模态混叠现象,引入EEMD.首先将采集到的振动信号进行软阈值去噪,然后对去噪信号进行EEMD分解,抽取能量较大的前4个内禀模态函数(IMF)进行Hilbert变换,得到包络信号,最后对包络信号进行细化谱分析,得到轴承故障特征频率.小波去噪可解决噪声造成的包络信号粗糙这一问题,提高了包络提取精度.将该方法应用于滚动轴承的内圈和外圈故障诊断,诊断结果均表明该方法能够准确有效地提取故障特征频率.
推荐文章
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
基于角域经验小波变换的滚动轴承故障诊断
变转速
滚动轴承
故障诊断
角域经验小波变换
基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法
变分模态分解
对称差分能量算子
峭度
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波去噪和EEMD包络解调分析的滚动轴承故障诊断方法
来源期刊 现代制造工程 学科 工学
关键词 小波变换 EEMD 包络解调分析 Hilbert变换 细化谱
年,卷(期) 2015,(12) 所属期刊栏目 试验研究
研究方向 页码范围 12-17
页数 6页 分类号 TH113.1|TN911.7
字数 3706字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 时培明 燕山大学电气工程学院 71 537 12.0 20.0
2 李培 燕山大学电气工程学院 5 21 3.0 4.0
3 许帅 燕山大学电气工程学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (114)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (19)
二级引证文献  (6)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波变换
EEMD
包络解调分析
Hilbert变换
细化谱
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代制造工程
月刊
1671-3133
11-4659/TH
大16开
北京市西城区核桃园西街36号301A
2-431
1978
chi
出版文献量(篇)
9080
总下载数(次)
14
总被引数(次)
50123
论文1v1指导