基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对大坝观测数据常规模型训练后的残差混沌效应及模型回归方法的拟合度等问题,文中融合遗传算法与神经网络的数据训练优势,通过构建的遗传神经网络(GA-BP)算法对大坝变形观测序列资料进行回归提取残差序列.基于位移回归残差序列的混沌特性,利用混沌理论对其残差序列进行数值分析,并将残差预测结果与GA-BP预测模型进行叠加.据此,提出了考虑大坝变形残差序列混沌效应的GA-BP监控预测模型.实例表明,文中建立的预测模型的计算精度及收敛速度均得到提高,且考虑残差影响的大坝监控模型的预测效果得到了有效的提升.该模型的建模方法亦可推广应用于边坡及其他水工建筑物的安全预警.
推荐文章
基于GA-BP算法的IGBT结温预测模型
IGBT
BP神经网络
GA-BP算法
结温预测模型
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于改进BP神经网络的混沌时间序列预测方法对比
混沌时间序列
BP神经网络
遗传算法
粒子群算法
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 顾及大坝位移残差序列混沌效应的GA-BP预测模型
来源期刊 中国科学(技术科学) 学科
关键词 大坝 残差序列 遗传神经网络 (GA-BP) 混沌理论
年,卷(期) 2015,(5) 所属期刊栏目 论文
研究方向 页码范围 541-546
页数 6页 分类号
字数 语种 中文
DOI 10.1360/N092014-00181
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐镇凯 51 329 9.0 16.0
2 魏博文 55 175 7.0 10.0
3 彭圣军 4 12 3.0 3.0
4 姜振翔 5 18 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (114)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(3)
  • 参考文献(0)
  • 二级参考文献(3)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(4)
  • 二级参考文献(4)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大坝
残差序列
遗传神经网络
(GA-BP)
混沌理论
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学(技术科学)
月刊
1674-7259
11-5844/TH
北京东黄城根北街16号
chi
出版文献量(篇)
3361
总下载数(次)
5
总被引数(次)
45315
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导