基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
群搜索优化算法是建立在群居动物觅食行为基础上的新型启发式算法,具有算法简单、易于实现的特点.标准群搜索优化算法(GSO)基于发现-追随的寻优策略,由于追随者搜索模式过于单一,从而容易陷入局部最优.为了提高标准GSO算法的收敛速度与收敛精度,提出一种改进群搜索优化算法(IGSO).在该算法中,发现者保持原有的寻优方式,追随者执行鱼群算法的寻优模式,通过引入鱼群算法的觅食、追尾、聚群与随机行为,使搜索方式多样化,可以同时考虑种群的个体最优与群体最优,从而有效避免陷入局部最优.通过6个基准测试函数对两种算法进行比较,实验结果表明,改进的群搜索优化算法优于标准群搜索优化算法.
推荐文章
一种混合改进的鸡群优化算法
鸡群算法
反向学习
边界变异
模拟退火算法
一种求解连续对象优化问题的改进蚁群算法
蚁群算法
TSP问题
连续对象优化问题
一种改进的和声搜索算法
和声搜索算法
蝙蝠算法
改进和声搜索算法
稳定性
精确度
一种改进的一维搜索指数优化算法
一维搜索
黄金分割法
加速收敛
指数优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的群搜索优化算法
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 群搜索优化算法 函数优化 人工鱼群算法
年,卷(期) 2015,(2) 所属期刊栏目 信息与控制工程
研究方向 页码范围 105-109
页数 5页 分类号 TM301.6
字数 3961字 语种 中文
DOI 10.3969/j.issn.1671-6833.2015.02.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏宏升 兰州交通大学自动化与电气工程学院 86 589 13.0 20.0
2 安晓伟 兰州交通大学自动化与电气工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (26)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(8)
  • 参考文献(2)
  • 二级参考文献(6)
2010(5)
  • 参考文献(5)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
群搜索优化算法
函数优化
人工鱼群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导