基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了改善支持向量回归机的性能,提出一种利用多核学习解决回归问题的算法(NS-MKR).算法对基本核函数的组合系数施加了Lp范数的约束(p>1),以得到组合系数的非稀疏解,并采用了两步优化方法,首先求解基于加权组合核的标准支持向量回归问题,用于学习拉格朗日乘子,然后采用简单的计算,求得基本核函数的组合系数,这2个步骤交替进行,直到满足事先定义的收敛准则.在人工数据集和真实数据集上的实验表明,相对于传统的单核和稀疏多核支持向量回归方法,提出的算法有更好的泛化性能.
推荐文章
阵列波束优化的标准支持向量回归
支持向量机
标准支持向量回归
波束形成
阵列信号处理
阵列波束优化
基于减量学习的鲁棒稀疏最小二乘支持向量回归机
最小二乘支持向量回归机
鲁棒性
稀疏性
鲁棒'3σ'准则
留一误差
减量学习
一类非平坦函数的多核最小二乘支持向量机的鲁棒回归算法
多核最小二乘支持向量机
非平坦函数
谱系聚类
偏最小二乘回归
鲁棒性
非均匀采样系统的支持向量回归建模与控制
非均匀采样系统
支持向量回归
预测控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 非稀疏多核组合的支持向量回归方法
来源期刊 四川大学学报(工程科学版) 学科 工学
关键词 多核学习 支持向量回归 非稀疏核组合 两步优化
年,卷(期) 2015,(4) 所属期刊栏目 信息工程
研究方向 页码范围 91-97
页数 7页 分类号 TP301.6
字数 4652字 语种 中文
DOI 10.15961/j.jsuese.2015.04.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁立新 武汉大学计算机学院 62 641 13.0 22.0
5 李照奎 武汉大学计算机学院 3 18 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (31)
参考文献  (15)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(8)
  • 参考文献(2)
  • 二级参考文献(6)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多核学习
支持向量回归
非稀疏核组合
两步优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程科学与技术
双月刊
1009-3087
51-1773/TB
大16开
成都市一环路南一段24号
62-55
1957
chi
出版文献量(篇)
4421
总下载数(次)
4
论文1v1指导