基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高维大样本空间中支持向量机( SVM)存在计算复杂度高、分类精度低等问题,在随机子空间方法与主成分分析方法的基础上,提出一种特征加权支持向量机的高维隐写盲检测方法。通过随机子空间对原始高维样本的特征空间进行随机采样,产生多个低维的特征子集,在特征子集中采用主成分分析法进行特征提取,并利用卡方统计计算特征权重,运用特征加权核函数训练各基SVM分类器,并用多数投票法融合各基分类器结果得到最终分类结果。对HUGO隐写算法的实验结果表明,该方法能有效降低SVM计算复杂度,与传统方法相比,具有较高的隐写检测率和更快的分类速度。
推荐文章
基于优化特征加权支持向量机的隐写分析方法
隐写分析
主成分分析
信息增益
特征优化
特征加权
支持向量机
基于改进支持向量机的隐写分析方法
隐写分析
特征提取
最小二乘超球一类支持向量机
分类器
一种对隐写图像的四分类盲检测方法
盲检测
图像质量特征
四分类
SVM
隐写域
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进支持向量机的高维隐写盲检测方法
来源期刊 计算机工程 学科 工学
关键词 隐写检测 随机子空间方法 主成分分析 支持向量机 高维特征
年,卷(期) 2015,(6) 所属期刊栏目 ?安全技术?
研究方向 页码范围 121-125
页数 5页 分类号 TP309
字数 4054字 语种 中文
DOI 10.3969/j.issn.1000-3428.2015.06.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钟尚平 福州大学数学与计算机科学学院 29 152 7.0 11.0
2 何凤英 福州大学数学与计算机科学学院 21 97 4.0 9.0
3 肖玉麟 福州大学数学与计算机科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (48)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隐写检测
随机子空间方法
主成分分析
支持向量机
高维特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导