基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过初始聚类中心后的EM算法用于求解GMM有较高的估算准确性,有效地提高了EM算法的收敛速度。
推荐文章
优先聚类和高斯混合模型树相融合的递增聚类研究
大数据
聚类分析
高斯混合模型
仿真实验
基于高斯混合聚类模型的公交出行特征分析
公交出行
出行特征
高斯混合聚类模型
数据采集
模型验证
聚类分析
高斯混合模型聚类中EM算法及初始化的研究
极大似然
高斯混合模型
EM算法
初始化
聚类分析
基于混合模型的聚类算法研究
聚类
EM算法
混合模型
数据挖掘
贝叶斯信息准则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于快速求解高斯混合模型的流量聚类算法
来源期刊 计算机工程与应用 学科 工学
关键词 K-Means算法 参数初始化 高斯混合模型 流量聚类
年,卷(期) 2015,(8) 所属期刊栏目 网络、通信、安全
研究方向 页码范围 96-101
页数 6页 分类号 TP391
字数 6281字 语种 中文
DOI 10.3778/j.issn.1002-8331.1305-0315
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 党小超 西北师范大学计算机科学与工程学院 101 384 9.0 14.0
5 郝占军 西北师范大学计算机科学与工程学院 67 231 7.0 11.0
9 毛鹏鑫 西北师范大学计算机科学与工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (158)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (6)
二级引证文献  (5)
1977(3)
  • 参考文献(0)
  • 二级参考文献(3)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
K-Means算法
参数初始化
高斯混合模型
流量聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导