作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
一般地说,时序数据通常是由趋势项、随机项及季节周期项三种成分组成的。通过对已有的时序数据进行分析与建模,便可以找出事物所蕴含的变化规律。针对多周期时序数据,设计实现了一种高精度的数据拟合算法。该算法首先对被拟合时序数据的趋势成分进行消除,然后应用自相关函数理论从剩余成分中析出多个两两互质的基本周期,最后基于最小二乘原理,用多组傅氏级数对多周期时序数据进行了拟合。实际应用验证了算法的有效性及先进性。
推荐文章
利用傅里叶谐波分析法的时序数据周期迭代辨识算法
时序数据
周期成分
迭代辨识
傅里叶谐波分析法
方差分析法
时序数据相似性挖掘算法研究
相似性挖掘
时间序列
数据挖掘
知识发现
时序数据的非线性最小二乘迭代分解算法
时序分解
非线性最小二乘
关键转折点
趋势导数
时序数据库发展研究
时序
时序数据库
数据库
发展
物联网
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多周期时序数据的傅氏级数拟合算法
来源期刊 计算机系统应用 学科
关键词 多周期时序数据 傅氏级数 数据拟合 最小二乘法
年,卷(期) 2015,(7) 所属期刊栏目
研究方向 页码范围 142-148
页数 7页 分类号
字数 3733字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄雄波 佛山职业技术学院电子信息系 40 70 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (25)
参考文献  (6)
节点文献
引证文献  (6)
同被引文献  (25)
二级引证文献  (10)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多周期时序数据
傅氏级数
数据拟合
最小二乘法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导