基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模糊C均值聚类算法在开始时采用随机的方式选取初始聚类中心,该方式使得FCM算法对初始聚类中心的选取极为敏感,且在局部范围内较易得到最优解,但是在全局范围内的效果较差;蚁群聚类算法根据先验知识随意设定蚂蚁拾起或放下数据对象的概率,缺乏严密的数学依据。针对FCM算法和蚁群算法的不足,文中将模糊粒度计算的思想推广应用到蚁群聚类算法中,并将改进后的蚁群聚类算法与模糊C均值聚类算法相结合,提出了一种将粒度计算、蚁群算法与模糊C均值算法思想相结合的聚类算法。经过实验验证,改进后的算法较原算法具有更好的聚类效果。
推荐文章
基于蚁群算法的模糊C均值聚类
FCM
蚁群算法
模糊聚类算法
蚁群-遗传融合的文本聚类算法
蚁群算法
遗传算法
融合
文本聚类
基于图聚类与蚁群算法的社交网络聚类算法
社交网络
数据挖掘
聚类处理
人工蚁群优化
图聚类
信任信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 集粒度计算、蚁群算法与模糊思想的聚类算法
来源期刊 计算机技术与发展 学科 工学
关键词 聚类 模糊C均值算法 粒度计算 蚁群算法
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 78-81,85
页数 5页 分类号 TP301.6
字数 4712字 语种 中文
DOI 10.3969/j.issn.1673-629X.2015.02.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 秦亮曦 广西大学计算机与电子信息学院 43 334 10.0 17.0
2 邵明来 广西大学计算机与电子信息学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (78)
参考文献  (15)
节点文献
引证文献  (6)
同被引文献  (16)
二级引证文献  (8)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(13)
  • 参考文献(0)
  • 二级参考文献(13)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(7)
  • 参考文献(4)
  • 二级参考文献(3)
2010(4)
  • 参考文献(4)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
聚类
模糊C均值算法
粒度计算
蚁群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导