原文服务方: 中国机械工程       
摘要:
提出了一种滚动轴承故障诊断的新方法。首次将自适应最稀疏时频分析(ASTFA)方法应用于振动信号的降噪,并针对 KVPMCD 方法只选择一种最佳相关模型而忽略其他几种相关模型对预测精度贡献的缺陷,提出了一种改进的 KVPMCD 模式识别算法———人工鱼群算法优化融合 Kriging 模型的基于变量预测模型的模式识别(AKVPMCD)算法,即采用收敛速度快、鲁棒性强、具有全局寻优能力的人工鱼群智能算法(AFSIA)优化融合多种 Kriging 相关模型来提高模型预测精度。在此基础上,提出了一种基于 ASTFA 降噪和 AKVPMCD 算法的滚动轴承故障诊断方法。实验结果表明,该方法可以有效提高分类识别的精度。
推荐文章
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
滚动轴承
故障诊断
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于 ASTFA 降噪和 AKVPMCD 的滚动轴承故障诊断方法
来源期刊 中国机械工程 学科
关键词 自适应最稀疏时频分析降噪 AKVPMCD 滚动轴承 故障诊断
年,卷(期) 2015,(21) 所属期刊栏目 科学基金
研究方向 页码范围 2934-2940
页数 7页 分类号 TH113
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2015.21.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨宇 湖南大学汽车车身先进设计制造国家重点实验室 170 5200 44.0 68.0
2 程军圣 湖南大学汽车车身先进设计制造国家重点实验室 210 5603 44.0 69.0
3 何知义 湖南大学汽车车身先进设计制造国家重点实验室 5 28 3.0 5.0
4 李紫珠 湖南大学汽车车身先进设计制造国家重点实验室 3 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (34)
参考文献  (11)
节点文献
引证文献  (6)
同被引文献  (34)
二级引证文献  (12)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(5)
  • 引证文献(4)
  • 二级引证文献(1)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
自适应最稀疏时频分析降噪
AKVPMCD
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导