基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视觉词袋模型在基于内容的图像检索中已经得到了广泛应用,然而对于自然图像的检索,由于图像目标视角多样、背景复杂、光照多变等原因,传统的视觉词袋模型的检索准确率仍然比较低。提出一种按类视觉词袋模型,即采用按照图像中目标物体的类别进行分组训练视觉词,从而提高视觉词的表征能力,改善检索效果;并根据检索返回图像的标签,以投票方式对查询目标做出判别,辅以标签检索,从而较大地提高了检索结果的准确率。
推荐文章
单尺度词袋模型图像分类方法
图像分类
单尺度SsIFT
视觉单词
词袋模型
基于词袋模型的林业业务图像分类
森林计测学
林业业务图像
图像分类
特征提取
BoW模型
支持向量机
一种基于视觉词袋模型的图像检索方法
图像检索
视觉词袋模型
局部特征提取
特征聚类
一种基于优化“词袋”模型的物体识别方法
物体识别
“词袋”模型
特征融合
K-means++聚类
支撑向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于按类视觉词袋模型与标签投票的图像检索
来源期刊 微型电脑应用 学科 工学
关键词 视觉词袋模型 按类视觉词袋模型 标签投票 图像检索
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 4-7,11
页数 5页 分类号 TP391.3
字数 3791字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 顾晓东 复旦大学电子工程系 29 320 12.0 17.0
2 张旺 复旦大学电子工程系 3 6 2.0 2.0
3 陆灏源 复旦大学电子工程系 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视觉词袋模型
按类视觉词袋模型
标签投票
图像检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导