基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对灰色预测模型GM(1,1)和支持向量机SVM预测模型进行分析,提出了多阶灰色支持向量机集成预测模型Dm_GM(1,1)-SVM.通过多阶缓冲算子改进灰色预测模型的预测精度,对最终预测值的各个相关指标进行预测;同时,采用粒子群优化算法对支持向量机模型进行径向基核参数和惩罚参数寻优,得到最佳参数对(c,g),从而确定支持向量机的最佳回归模型;最后将各指标预测值作为支持向量机模型的输入,依据预测模型和预测模型的输入值求得预测结果.实验实例表明,多阶灰色支持向量机集成模型和传统的预测模型相比,在本例中预测精度更高,说明多阶灰色预测模型和支持向量机模型相结合在解决实际预测问题中具有实用价值.
推荐文章
基于支持向量机补偿的灰色模型网络流量预测
灰色模型
支持向量机
网络流量
残差序列
补偿
预测精度
基于灰色支持向量机的裂纹扩展信息预测研究
灰色理论
支持向量机
裂纹
预测
核函数
基于灰色支持向量机的基金波动率预测研究
v-支持向量回归
灰色支持向量机
波动率预测
基于灰色最小二乘支持向量机的边坡位移预测
边坡位移
灰色模型
最小二乘支持向量机
遗传算法
时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多阶灰色支持向量机集成预测模型研究
来源期刊 计算机工程与科学 学科 工学
关键词 多阶灰色预测模型 支持向量机 集成预测 缓冲算子 粒子群优化算法
年,卷(期) 2015,(3) 所属期刊栏目 人工智能
研究方向 页码范围 539-546
页数 8页 分类号 TP391
字数 5799字 语种 中文
DOI 10.3969/j.issn.1007-130X.2015.03.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李敬兆 安徽理工大学计算机科学与工程学院 154 567 12.0 17.0
2 周华平 安徽理工大学计算机科学与工程学院 40 103 6.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (57)
参考文献  (17)
节点文献
引证文献  (7)
同被引文献  (13)
二级引证文献  (3)
1989(2)
  • 参考文献(2)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(9)
  • 参考文献(7)
  • 二级参考文献(2)
2013(7)
  • 参考文献(7)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多阶灰色预测模型
支持向量机
集成预测
缓冲算子
粒子群优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导