提出了一种改进的自适应新生目标强度的概率假设密度(PHD)滤波算法。首先,对归一化因子进行了分析,在此基础上,提出了一种改进滤波策略,有效解决了归一化失衡问题;其次,在量测点附近通过无迹变换(U T )产生样本点,然后再采用粒子群(PSO )算法寻找最优点,从而得到新生目标概率密度函数的近似估计;最后,在序列蒙特卡罗(SMC)框架下对算法进行了实现。采用一种回溯策略,通过记录新生目标的状态和数目,修正存活目标的估计数目和相关航迹,进而得到每个目标的完整航迹。仿真结果表明:改进算法可以有效跟踪多个机动目标的状态和数目,滤波精度较高,具有较好的工程应用前景。