基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前,深度学习在分类问题中取得了很多很好的效果,并开始在部分回归任务得到应用。然而,绝大部分研究重点都集中在相对其他回归算法的预报精度上,而忽视了有实际应用需求的回归算法预报鲁棒性问题。首先基于受限的玻尔兹曼机建立了一个具有3个隐含层的生成型深信度网络多步预测模型;然后,建立了基于单隐含层神经网络、三个隐含层的神经网络以及单核支持向量的典型多步预测模型,并利用4组宁夏地区不同季节的风速数据进行回归算法的稳定性对比实验。实验结果显示,基于受限玻尔兹曼机建立的具有三个隐含层的深信度网络模型的多步预报误差的均值和方差都是最小的。因此,基于生成型深信度网络的回归模型不仅预报精度高,而且此预报算法的鲁棒性也比较好;相对其他三种典型回归算法来说,可以更好地满足风电场风速预报问题的实际工程应用需求。
推荐文章
基于深信度网络分类算法的行人检测方法
智能交通
行人检测
深信度网络
受限波兹曼机
深度学习
基于滑动窗特征融合的深信度网络驾驶行为识别
深信度网络
驾驶行为识别
加速度
特征融合
滑动窗
基于小波域多元非线性回归的鲁棒性数字水印算法
数字水印
多元非线性回归
小波变换
最小二乘
偏鲁棒M回归回声状态网络
回声状态网络
偏鲁棒M回归
残差权值
杠杆权值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于生成型深信度网络的回归算法鲁棒性分析
来源期刊 科学技术与工程 学科 工学
关键词 无监督学习 特征提取 玻尔兹曼机 生成型 深信度网络 鲁棒性
年,卷(期) 2015,(22) 所属期刊栏目 论文 -- 计算机技术
研究方向 页码范围 47-52
页数 6页 分类号 TP391.4
字数 3271字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无监督学习
特征提取
玻尔兹曼机
生成型
深信度网络
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
总被引数(次)
113906
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导