基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统神经网络模型训练时需求的样本量大、训练收敛速度慢、甚至不能完成训练的问题,提出一种具有良好分类能力的模式识别方法———离散隐马尔可夫模型(DHMM)。以滚动轴承为研究对象,对振动信号进行分帧处理,通过小波包分解方法得到其特征参数,再由主成分分析方法(PCA )对特征参数进行降维优化,利用简化后特征参数矢量训练各轴承状态的DHMM ,最后由训练好的DHMM 实现滚动轴承运行状态监测与故障诊断。实验研究表明:该方法能够有效地实现滚动轴承的状态识别,并且需要的样本量少,训练速度快,对实现滚动轴承运行状态的智能化在线监测具有重要的意义。
推荐文章
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DHMM的滚动轴承故障诊断
来源期刊 机械工程与自动化 学科 工学
关键词 滚动轴承 故障诊断 隐马尔科夫模型 主成分分析
年,卷(期) 2015,(4) 所属期刊栏目 工艺研究
研究方向 页码范围 132-133,136
页数 3页 分类号 TH165+.3|TH133.33
字数 1679字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 傅攀 西南交通大学机械工程学院 78 545 12.0 18.0
2 樊巍 西南交通大学机械工程学院 3 9 2.0 3.0
3 郑晴晴 西南交通大学机械工程学院 2 12 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (31)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (21)
二级引证文献  (2)
1933(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障诊断
隐马尔科夫模型
主成分分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程与自动化
双月刊
1672-6413
14-1319/TH
大16开
太原市胜利街228号
22-117
1972
chi
出版文献量(篇)
9123
总下载数(次)
41
总被引数(次)
29895
论文1v1指导