基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(SVM)是一种性能优异的机器学习算法,其核函数参数的选取对于建模精度以及泛化能力有着重要的影响。提出一种基于改进萤火虫算法的 SVM核函数参数选取方法,通过改进萤火虫位置更新公式并在移动过程中引入亮度特征从而确定最佳的 SVM核函数参数。实验表明,该算法选取的 SVM核函数参数在保证分类器收敛性能的同时,提高了分类精度,取得了良好的优化效果。
推荐文章
基于Tent混沌映射的改进的萤火虫算法
萤火虫算法
混沌映射
混沌优化算法
参数优化
基准测试函数
基于萤火虫算法的PID参数优化方法研究
PID
萤火虫算法
参数优化
Simulink
一种改进的萤火虫算法
萤火虫算法
多峰函数
动态步长
一种新颖的改进萤火虫算法
萤火虫算法
多峰函数
动态步长
自适应
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进萤火虫算法的 SVM 核参数选取
来源期刊 计算机应用与软件 学科 工学
关键词 支持向量机 萤火虫算法 SVM核函数
年,卷(期) 2015,(6) 所属期刊栏目 算 法
研究方向 页码范围 256-258,287
页数 4页 分类号 TP3
字数 3926字 语种 中文
DOI 10.3969/j.issn.1000-386x.2015.06.063
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈海斌 浙江大学超大规模集成电路设计研究所 139 832 13.0 21.0
2 杨海 浙江大学超大规模集成电路设计研究所 2 28 2.0 2.0
3 丁毅 3 9 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (168)
参考文献  (10)
节点文献
引证文献  (7)
同被引文献  (47)
二级引证文献  (44)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(11)
  • 参考文献(2)
  • 二级参考文献(9)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(10)
  • 引证文献(2)
  • 二级引证文献(8)
2019(27)
  • 引证文献(1)
  • 二级引证文献(26)
2020(9)
  • 引证文献(0)
  • 二级引证文献(9)
研究主题发展历程
节点文献
支持向量机
萤火虫算法
SVM核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导