基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像去噪是图像处理中的关键问题之一,也是图像后续处理的基础,结合近年来兴起的稀疏表示理论,能更好地处理图像去噪问题.通过引入图像稀疏表示框架,从含噪图像自身中优化训练字典,初始字典选择构造非采样小波字典来更好地捕获图像信息,通过反复迭代学习获得高度自适应的过完备稀疏字典,重构图像时构造先验概率矩阵,结合后验概率估计与传统的正交匹配算法提出改进的图像重构算法.实验结果表明,与其他去噪方法相比,该算法具有良好的去噪能力,能较好地保持图像的边缘和细节特征,去噪后的图像更为清晰.
推荐文章
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
一种基于稀疏表示的图像去噪算法
图像去噪
稀疏表示
小波变换
脊波变换
基于小波变换的图像去噪方法研究
图像去噪
小波阀值萎缩法
混合模型
中值滤波
基于二进小波的图像去噪技术
小波变换
图像去噪
门限
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于非抽样小波字典和稀疏表示的图像去噪方法
来源期刊 计算机应用与软件 学科 工学
关键词 图像去噪 稀疏表示 非抽样小波 过完备字典
年,卷(期) 2015,(12) 所属期刊栏目 图像处理与应用
研究方向 页码范围 193-196,205
页数 5页 分类号 TP391
字数 4828字 语种 中文
DOI 10.3969/j.issn.1000-386x.2015.12.045
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常晋义 常熟理工学院计算机科学与工程学院 88 429 12.0 16.0
2 丁富淮 苏州大学计算机科学与技术学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (1)
参考文献  (5)
节点文献
引证文献  (7)
同被引文献  (9)
二级引证文献  (3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像去噪
稀疏表示
非抽样小波
过完备字典
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导