原文服务方: 上海海事大学学报       
摘要:
在对多智能体的编队控制上,当输入和系统状态受到约束时,模型预测控制算法比传统的输入输出反馈线性化控制算法具有显著的优势,但传统的模型预测控制算法需要在线优化控制,从而导致巨大的在线负担.为减小这种在线负担,提出一种双模式模型预测控制算法.该算法使用模型预测控制器对控制变量进行在线优化,使得未来某时刻的系统状态进入终端约束集内;此时将系统状态作为输入输出反馈线性化控制器的输入,将系统状态驱动到稳定值;在目标函数中加入避碰函数来有效避免邻近多智能体间的碰撞.仿真结果表明,当输入和状态受到约束时,双模式模型预测控制算法在对多智能体编队控制上比仅使用输入输出反馈线性化控制算法具有明显的优势.
推荐文章
基于多Hammerstein模型及APSO的预测控制策略
非线性预测控制
多Hammerstein模型
滚动优化
自适应粒子群算法
基于聚类多模型建模的多模态预测控制
多模型切换策略
多模型预测控制
多模态控制器设计
模型融合
一种双模式的运动估计算法
运动估计
粒子群算法
十字搜索法
双模式
基于多模型的非线性系统广义预测控制
非线性系统
多模型
广义预测控制
径向基函数神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双模式模型预测控制算法的多智能体编队控制
来源期刊 上海海事大学学报 学科
关键词 多智能体 编队控制 双模式 模型预测控制 反馈 避碰
年,卷(期) 2016,(4) 所属期刊栏目
研究方向 页码范围 82-86,91
页数 6页 分类号 TP242
字数 语种 中文
DOI 10.13340/j.jsmu.2016.04.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张颖 上海海事大学信息工程学院 44 295 11.0 16.0
2 王明兴 上海海事大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (211)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多智能体
编队控制
双模式
模型预测控制
反馈
避碰
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海海事大学学报
季刊
1672-9498
31-1968/U
大16开
1979-01-01
chi
出版文献量(篇)
1795
总下载数(次)
0
总被引数(次)
13718
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导