基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了降低多光谱图像与全色图像融合过程中的光谱扭曲和空间失真,提出了一种稀疏非负矩阵分解的融合新方法.首先从全色图像学习出一个高分辨字典和相应的低分辨字典,然后构造多光谱图像的稀疏非负矩阵分解模型,在低分辨字典下获得光谱系数矩阵,最后将该系数矩阵与高分辨字典相乘得到融合后的高分辨多光谱图像.稀疏正则项的引入有效克服了标准非负矩阵分解算法的不稳定现象,能够较好地保持图像的光谱信息和空间信息.将该方法应用于快鸟卫星和地球眼卫星数据,与同类方法的对比分析结果显示:该方法能够减少光谱扭曲和空间信息的损失,得到的融合结果在视觉效果和客观评价指标上均优于对比方法.
推荐文章
基于非负矩阵分解和SFIM的图像融合算法
非负矩阵分解
SFIM
多光谱
图像融合
基于稀疏非负TT分解的图像分类算法
Tensor Train分解
交替非负最小二乘法
非负张量分解
稀疏性
基于稀疏性非负矩阵分解的故障监测方法
故障监测
非负矩阵分解
主元分析
稀疏编码
统计过程监控
基于小波和非负稀疏矩阵分解的人脸识别方法
人脸识别
小波变换
非负矩阵分解
Fisher线性判别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 稀疏非负矩阵分解下的遥感图像融合
来源期刊 西安电子科技大学学报(自然科学版) 学科 工学
关键词 遥感图像融合 非负矩阵分解 稀疏正则
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 193-198
页数 6页 分类号 TP751
字数 4166字 语种 中文
DOI 10.3969/j.issn.1001-2400.2016.02.033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘芳 西安电子科技大学计算机学院 145 3511 30.0 54.0
10 李红 西安电子科技大学计算机学院 6 29 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (2)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (15)
二级引证文献  (9)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(7)
  • 引证文献(3)
  • 二级引证文献(4)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
遥感图像融合
非负矩阵分解
稀疏正则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安电子科技大学学报(自然科学版)
双月刊
1001-2400
61-1076/TN
西安市太白南路2号349信箱
chi
出版文献量(篇)
4652
总下载数(次)
5
总被引数(次)
38780
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导