基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模拟电路错误检测问题,即重点是检测出模拟电路芯片存在错误后确定错误元件或参数的问题,对于进一步明确错误产生原因,在设计或制造中加以改进,有重要的意义.经典做法是通过预先设置错误,并仿真得到其对应的响应数据,构造“错误字典”,然后将测试信号与错误字典进行比对,识别其属于哪一类错误类型.本文提出一种基于数据稀疏表示方法来进行错误类型识别的新方法,它计算属于不同错误类型的数据在所有类型的数据构成的空间中的展开向量,根据得到的稀疏向量来判断其所属错误类型.对于稀疏表示方法无法进行准确分类识别的情况,采用SVM作为二级分类器进行修正.存在某些错误类型,其响应数据构成的空间之间线性相关性较强,对于稀疏表示后属于其中之一类型的数据,采用传统的SVM方法来加以辅助分类.在两个实验例子中,与SVM,Ada Boost以及没有加SVM辅助分类的单纯稀疏表示方法相比较,本文方法有更高的错误类型识别正确率.
推荐文章
基于HTP稀疏表示的鲁棒目标追踪方法
目标追踪
稀疏表示
硬阈值追踪
计算量
基于稀疏动态主元分析的故障检测方法
主元分析
动态主元分析
稀疏动态主元分析
非零负荷
故障检测
鲁棒核主元分析的数据重构
核主元分析
核函数M位置估计
鲁棒核主元分析
数据重构
基于加权分块稀疏表示的光照鲁棒性人脸识别
人脸识别
光照归一化
稀疏表示
加权分块
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 鲁棒主元分析和稀疏表示方法在模拟电路错误检测中的应用
来源期刊 复旦学报(自然科学版) 学科 工学
关键词 错误检测 支持向量机 鲁棒主元分析 稀疏表示
年,卷(期) 2016,(1) 所属期刊栏目 微电子学与通信科学
研究方向 页码范围 51-58,67
页数 分类号 TN47
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾璇 复旦大学专用集成电路与系统国家重点实验室 34 66 4.0 6.0
2 朱恒亮 复旦大学专用集成电路与系统国家重点实验室 7 8 1.0 2.0
3 吴益锋 复旦大学专用集成电路与系统国家重点实验室 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (24)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
错误检测
支持向量机
鲁棒主元分析
稀疏表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
复旦学报(自然科学版)
双月刊
0427-7104
31-1330/N
16开
上海市邯郸路220号
4-193
1955
chi
出版文献量(篇)
2978
总下载数(次)
5
总被引数(次)
22578
论文1v1指导