基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对鲁棒分块跟踪采用穷举的搜索策略以及对光照敏感等问题,提出了一种基于粒子群优化算法和Uniform LBP特征的分块跟踪方法.利用统一的局部二值模式(Uniform Local Binary Pattern)特征对光照的不变性以及计算效率高的特点,在原鲁棒分块跟踪方法以灰度积分直方图作为特征的基础上,添加了Uniform LBP特征;利用粒子群优化算法具有精度高,收敛快的特点,将PSO算法运用到对候选目标的搜索中.实验结果表明,在不降低算法运行速度的情况下,以及光照变化较大,短时间目标完全遮挡的跟踪环境下,该算法鲁棒性显著增强.
推荐文章
基于自适应粒子群优化的粒子滤波跟踪算法
粒子滤波跟踪
粒子群优化
自适应调整
搜索能力平衡
随机变异
优化算法
基于新型粒子群优化的粒子滤波雷达目标跟踪算法
粒子群优化
粒子滤波
目标跟踪
闪烁噪声
基于动态粒子群优化的目标跟踪算法
目标跟踪
交互式多模型算法
变结构多模型算法
动态优化
粒子群优化算法
基于粒子群优化粒子滤波的目标跟踪方法
粒子滤波
粒子群优化
均值漂移
有效粒子数
重采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化算法和Uniform LBP特征的分块跟踪
来源期刊 计算机工程与应用 学科 工学
关键词 目标跟踪 粒子群优化算法 分块 Uniform LBP特征
年,卷(期) 2016,(1) 所属期刊栏目 图形图像处理
研究方向 页码范围 200-205
页数 6页 分类号 TP391.41
字数 4600字 语种 中文
DOI 10.3778/j.issn.1002-8331.1410-0106
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢昌康 华南师范大学计算机学院 1 4 1.0 1.0
2 冯刚 华南师范大学计算机学院 18 199 5.0 14.0
3 王国海 华南师范大学计算机学院 3 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (31)
参考文献  (11)
节点文献
引证文献  (4)
同被引文献  (14)
二级引证文献  (8)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(7)
  • 引证文献(1)
  • 二级引证文献(6)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
目标跟踪
粒子群优化算法
分块
Uniform LBP特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导