基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据暂态电能质量扰动现象的本质特征,提出一种基于小波包和PNN的电能质量扰动定位与分类新方法.该方法利用小波包对扰动信号进行采样和分解,提取小波包重构系数并定位信号突变点,然后计算各频段的能量并进行归一化处理,构造能量特征向量作为PNN的输入样本,进行PNN网络训练和测试,最终实现不同扰动信号的分类.Matlab仿真结果表明,该方法能够快速、准确地定位和区分扰动信号.
推荐文章
小波包和最小二乘支持向量机的电能质量扰动识别
电能质量
扰动识别
特征向量
分类器
支持向量机
最小二乘
基于小波系数KPCA和PNN的电能质量扰动分类
电能质量扰动
分类
核主成分分析
概率神经网络
小波变换
基于改进支持向量机的电能质量扰动分类
电能质量
扰动识别
最小二乘支持向量机
小渡变换
基于S变换与傅里叶变换的电能质量多扰动分类识别
电能质量
扰动
分类
S变换
快速傅里叶变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包和PNN的电能质量扰动定位与分类
来源期刊 工矿自动化 学科 工学
关键词 电能质量 扰动信号定位 扰动信号分类 小波包 PNN
年,卷(期) 2016,(5) 所属期刊栏目 实验研究
研究方向 页码范围 40-44
页数 5页 分类号 TD611
字数 语种 中文
DOI 10.13272/j.issn.1671-251x.2016.05.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (106)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(13)
  • 参考文献(0)
  • 二级参考文献(13)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电能质量
扰动信号定位
扰动信号分类
小波包
PNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工矿自动化
月刊
1671-251X
32-1627/TP
大16开
江苏省常州市木梳路1号中煤科工集团常州自动化研究院内
28-162
1973
chi
出版文献量(篇)
6068
总下载数(次)
11
总被引数(次)
33991
论文1v1指导