基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对采用单核学习支持向量机不能很好地处理样本分布不均衡、复杂多变的高光谱图像数据的分类问题,提出一种结合采样技术和多核学习的高光谱图像数据的分类方法. 该方法先对支持向量机模型中的少数类支持向量过采样而不是对训练样本采样以达到数据平衡,然后利用加权求和核的方式进行多尺度多核学习,通过梯度下降算法实现权系数的求解建立多核支持向量机,最后利用一系列二分类器组合解决多类分类问题. 实验结果表明,该方法与传统的支持向量机分类方法相比地物的总体分类精度(OA)提高了4.07%,平均分类精度(AA)提高了9.62%.
推荐文章
基于多核学习SVM的图像分类识别算法
支持向量机
多核学习
行人检测
图像识别
直方图交叉核
交叉验证
基于联合协同表示与SVM决策融合的高光谱图像分类研究
协同表示
高光谱图像分类
决策融合
支持向量机
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
基于图像分割和LSSVM的高光谱图像分类
高光谱图像分类
图像分割
LSSVM
数据降维
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高光谱图像数据的多尺度多核SVM分类
来源期刊 计算机与现代化 学科 工学
关键词 高光谱图像 不平衡分类 多核SVM 过采样 梯度下降算法
年,卷(期) 2016,(2) 所属期刊栏目 图像处理
研究方向 页码范围 11-14,20
页数 5页 分类号 TP751.1
字数 4062字 语种 中文
DOI 10.3969/j.issn.1006-2475.2016.02.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 楚恒 重庆邮电大学通信学院 15 22 3.0 3.0
5 王兴 重庆邮电大学通信学院 6 24 3.0 4.0
6 晁拴社 重庆邮电大学通信学院 7 13 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (1906)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (5)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(7)
  • 参考文献(1)
  • 二级参考文献(6)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(2)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
高光谱图像
不平衡分类
多核SVM
过采样
梯度下降算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导