基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对液压驱动火箭炮随动系统故障类型的多样性以及故障信息不确定性等问题,提出了证据理论与神经网络综合集成的故障诊断方法。为克服单一神经网络自身的缺点,在普通节点处建立2个改进神经网络模型来简化网络结构,分别以铁谱数据和压力、流量、温度特征参数作为输入向量进行初始故障诊断,并将诊断结果作为证据理论的基本概率分配,从而实现了赋值的客观化。然后,利用 D-S 证据理论对2个改进神经网络的初始诊断结果进行融合。实验结果表明:该方法避免了神经网络识别时的误诊,提高了液压驱动的火箭炮随动系统故障诊断的准确性。
推荐文章
基于神经网络与改进证据理论融合的故障诊断方法
流体传动与控制
多传感器信息融合
故障诊断
D-S证据理论
液压系统
基于量子遗传神经网络与D-S证据理论的断路器机械特性故障诊断
断路器
故障诊断
量子算法
遗传算法
RBF神经网络
D-S证据理论
基于D-S证据和PSO神经网络的电路故障诊断
电路
故障诊断
D-S证据
神经网络
基于D-S证据理论信息融合的故障诊断方法
信息处理技术
证据理论
信息融合
故障诊断
决策规则
状态监测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 神经网络与 D-S 证据理论融合的液压系统故障诊断方法
来源期刊 测试科学与仪器 学科 工学
关键词 多传感器信息融合 故障诊断 D-S 证据理论 BP 神经网络
年,卷(期) 2016,(4) 所属期刊栏目
研究方向 页码范围 368-374
页数 7页 分类号 TP181
字数 441字 语种 英文
DOI 10.3969/j.issn.1674-8042.2016.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨清文 陆军军官学院五系 10 67 4.0 8.0
2 刘保杰 陆军军官学院五系 7 35 3.0 5.0
3 吴翔 陆军军官学院五系 4 38 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (37)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多传感器信息融合
故障诊断
D-S 证据理论
BP 神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测试科学与仪器
季刊
1674-8042
14-1357/TH
山西省太原市学院路3号
eng
出版文献量(篇)
843
总下载数(次)
4
论文1v1指导