基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决l1范数约束下的稀疏表示判别信息不足的问题,该文提出基于局部敏感核稀疏表示的视频目标跟踪算法。为了提高目标的线性可分性,首先将候选目标的SIFT特征通过高斯核函数映射到高维核空间,然后在高维核空间中求解局部敏感约束下的核稀疏表示,将核稀疏表示经过多尺度最大值池化得到候选目标的表示,最后将候选目标的表示代入在线的SVMs,选择分类器得分最大的候选目标作为目标的跟踪位置。实验结果表明,由于利用了核稀疏表示下数据的局部性信息,使得算法的鲁棒性得到一定程度的提高。
推荐文章
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
基于字典优化的稀疏表示的视频镜头分类
稀疏表示
字典优化
视频镜头分类
基于稀疏表示和特征选择的LK目标跟踪
视觉跟踪
稀疏表示
LK图像配准算法
特征选择
基于核稀疏表示的特征选择算法
特征选择
稀疏表示
核技巧
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部敏感核稀疏表示的视频跟踪
来源期刊 电子与信息学报 学科 工学
关键词 视频跟踪 核稀疏表示 局部敏感约束 支持向量机
年,卷(期) 2016,(4) 所属期刊栏目 论文
研究方向 页码范围 993-999
页数 7页 分类号 TP391
字数 6696字 语种 中文
DOI 10.11999/JEIT150785
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 侯志强 空军工程大学信息与导航学院 74 1526 13.0 38.0
2 查宇飞 空军工程大学航空航天工程学院 39 601 11.0 23.0
3 毕笃彦 空军工程大学航空航天工程学院 282 3094 27.0 43.0
4 高山 空军工程大学航空航天工程学院 49 151 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (5)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (8)
二级引证文献  (2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频跟踪
核稀疏表示
局部敏感约束
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导