原文服务方: 机械传动       
摘要:
针对传动系统振动信号可能存在的故障特征不明显造成的故障识别困难问题,提出了一种基于变分模态分解和奇异值分解的特征提取方法,并采用模糊C均值聚类进行状态识别与监测.首先将齿轮箱各状态数据进行变分模态分解,并将各模态奇异值作为特征值,通过模糊聚类进行状态识别,最后应用于齿轮箱状态监测.结果表明,对于人工无法识别的齿轮箱故障,该方法故障识别率在86%以上,基于该方法的状态监测可为齿轮故障预警及严重程度提供参考.
推荐文章
基于变分模态分解和相关峭度的齿轮箱混合故障诊断
齿轮箱
混合故障
变分模态分解
相关峭度
包络分析
基于提高变分模态分解的齿轮箱复合故障特征提取
故障检测
齿轮箱
最小熵反褶积
变分模态分解
多故障
基于变分模态分解与快速谱峭图的齿轮箱滚动轴承故障特征提取
变分模态分解
相关峭度
快速谱峭图
特征提取
基于时变滤波经验模式分解的齿轮箱故障诊断
信号分析
时变滤波经验模式分解
齿轮箱
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变分模态分解的齿轮箱状态监测
来源期刊 机械传动 学科
关键词 变分模态分解 模糊C均值 齿轮 机械传动 状态监测
年,卷(期) 2016,(1) 所属期刊栏目 开发应用
研究方向 页码范围 161-164
页数 4页 分类号
字数 语种 中文
DOI 10.16578/j.issn.1004.2539.2016.01.038
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (209)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变分模态分解
模糊C均值
齿轮
机械传动
状态监测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导