基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在社交媒体中,存在大量的反讽和讽刺等语言现象,这些语言现象往往表征了一定的情感倾向性.然而这些特殊的语言现象所表达的语义倾向性,通常与其浅层字面含义相去甚远,因此加大了社交媒体中文本情感分析的难度.鉴于此,该文主要研究中文社交媒体中的讽刺语用识别任务,构建了一个覆盖反讽、讽刺两种语言现象的语料库.基于此挖掘反讽和讽刺的语言特点,该文通过对比一些有效领域特征,验证了在反讽和讽刺文本的识别中,其结构和语义等深层语义特征的重要性.同时,该文提出了一种有效的多特征融合的混合神经网络判别模型,融合了卷积神经网络与LSTM序列神经网络模型,通过深层模型学习深层语义特征和深层结构特征,该模型获得了较好的识别精度,优于传统的单一的神经网络模型和BOW(Bag-of-Words)模型.
推荐文章
基于RCBA模型的多模态讽刺识别
讽刺识别
多模态
特征融合
注意力机制
基于多特征融合和神经网络的电子音乐分类模型
多特征融合
神经网络
电子音乐
分类模型
自适应多特征融合
多层感知分类
基于神经网络刀具磨损的多特征融合监控
神经网络
刀具磨损
融合
监控
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多特征融合的混合神经网络模型讽刺语用判别
来源期刊 中文信息学报 学科 工学
关键词 讽刺 神经网络 多特征融合 情感分析
年,卷(期) 2016,(6) 所属期刊栏目 情感分析与社会计算
研究方向 页码范围 215-223
页数 9页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 任福继 25 106 7.0 9.0
2 孙晓 19 185 8.0 13.0
3 何家劲 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (11)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
讽刺
神经网络
多特征融合
情感分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
论文1v1指导