作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确预测用户电量需求对于市场竞争环境下的电网公司、工商业、居民用户来说具有重要意义。简单综述了国内外电量预测理论,包括灰色理论、人工神经网络理论等,阐述了GM(1,1)模型和BP模型预测电量需求的原理。详细介绍了电力市场电量需求预测的几种实际经常使用的方法,包括经济模型法、综合分析法、分析预测法及其他方法等。最后,以电力弹性系数法为例,基于广州市2000年~2008年的市用电量历史数据,对其2009年用电量需求进行了预测分析。同时,简要给出了提高电量预测准确率的一些措施,建议将近年来发展的机器学习算法等运用到电量需求预测中,对于“电网-用户-售电商-负荷集成商”等多主体的用电供需友好互动将具有重要的指导和参考意义。
推荐文章
基于支持向量机的旅游需求量预测模型
旅游需求量
预测模型
支持向量机
灰色模型
参数优化
基于云计算技术的城市就业需求量预测研究
城市就业
需求量预测
云计算技术
样本采集
样本建模
仿真实验
基于ARIMA模型对汽车工厂用电量分析与预测
时间序列
ARIMA模型
汽车工厂
用电量
Eviews 10
基于Hadoop和并行BP网络的打车需求量预测系统研究
打车需求量
Hadoop
MapReduce
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于电量分析的配网用户用电需求量预测研究
来源期刊 新型工业化 学科
关键词 电量需求 预测 灰色理论 人工神经网络理论 电力弹性系数 供需互动
年,卷(期) 2016,(6) 所属期刊栏目 设计与研究
研究方向 页码范围 50-59
页数 10页 分类号
字数 8688字 语种 中文
DOI 10.19335/j.cnki.2095-6649.2016.06.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 麦琪 5 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (153)
参考文献  (21)
节点文献
引证文献  (6)
同被引文献  (54)
二级引证文献  (21)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(6)
  • 参考文献(2)
  • 二级参考文献(4)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(10)
  • 参考文献(2)
  • 二级参考文献(8)
2005(9)
  • 参考文献(1)
  • 二级参考文献(8)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(9)
  • 参考文献(6)
  • 二级参考文献(3)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(5)
  • 引证文献(1)
  • 二级引证文献(4)
2018(9)
  • 引证文献(3)
  • 二级引证文献(6)
2019(9)
  • 引证文献(1)
  • 二级引证文献(8)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
电量需求
预测
灰色理论
人工神经网络理论
电力弹性系数
供需互动
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
新型工业化
月刊
2095-6649
11-5947/TB
16开
北京石景山区鲁谷路35号1106室
2011
chi
出版文献量(篇)
2442
总下载数(次)
8
论文1v1指导