基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注.为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法.方法 构建卷积神经网络模型,使用不同的池化模型对网络进行训练,并检验在不同迭代次数下的学习结果.在现有算法准确率不高和收敛速度较慢的情况下,通过使用不同的池化模型对网络进行训练,从而构建一种新的动态自适应池化模型,并研究在不同迭代次数下其对识别准确率和收敛速度的影响.结果 通过对比实验发现,使用动态自适应池化算法的卷积神经网络学习性能最优,在手写数字集上的收敛速度最高可以提升18.55%,而模型对图像的误识率最多可以降低20%.结论 动态自适应池化算法不但使卷积神经网络对特征的提取更加精确,而且很大程度地提高了收敛速度和模型准确率,从而达到优化网络学习性能的目的.这种模型可以进一步拓展到其他与卷积神经网络相关的深度学习算法.
推荐文章
基于多尺度池化卷积神经网络的疲劳检测方法研究
视觉特征分析
多尺度池化
卷积神经网络
疲劳检测
人脸检测
嵌套池化三元组卷积神经网络的行人再识别
行人再识别
嵌套池化
三元组损失函数
局部特征
间接度量
基于循环卷积神经网络的实体关系抽取方法研究
GRU
循环卷积神经网络
注意力机制
关系抽取
并行尺度裁切的深度卷积神经网络模型
并行卷积神经网络
识别
尺度裁切
特征提取
AlexNet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 不同池化模型的卷积神经网络学习性能研究
来源期刊 中国图象图形学报 学科 工学
关键词 深度学习 卷积神经网络 图像识别 特征提取 算法收敛 动态自适应池化
年,卷(期) 2016,(9) 所属期刊栏目 图像理解和计算机视觉
研究方向 页码范围 1178-1190
页数 13页 分类号 TP391
字数 10045字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘万军 辽宁工程技术大学软件学院 181 1681 19.0 33.0
2 曲海成 辽宁工程技术大学软件学院 52 387 11.0 18.0
3 梁雪剑 辽宁工程技术大学软件学院 7 173 3.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (908)
参考文献  (10)
节点文献
引证文献  (105)
同被引文献  (164)
二级引证文献  (71)
1933(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(15)
  • 引证文献(15)
  • 二级引证文献(0)
2018(50)
  • 引证文献(42)
  • 二级引证文献(8)
2019(78)
  • 引证文献(33)
  • 二级引证文献(45)
2020(33)
  • 引证文献(15)
  • 二级引证文献(18)
研究主题发展历程
节点文献
深度学习
卷积神经网络
图像识别
特征提取
算法收敛
动态自适应池化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导