开展飞机结冰气动特性在线辨识研究,不仅可以用于分析结冰对飞机气动特性的影响,而且对于飞机结冰在线识别具有重要的意义。近年来卡尔曼滤波和 H ∞算法在飞机结冰在线辨识中应用较多,二者均具有可靠性高、收敛快等特点,但对于噪声环境下算法的可靠性和精度评估还不够充分。本文针对飞机结冰在线辨识需求,探讨了扩展卡尔曼滤波和 H ∞算法作为结冰在线辨识算法的应用。首先通过 NASA 双水獭结冰研究飞机算例,利用扩展卡尔曼滤波和 H ∞算法,辨识双水獭飞机结冰后的俯仰方向导数,通过考虑阵风扰动和测量噪声后的仿真数据快速估计该飞机俯仰方向上的三个稳定和控制导数,并将辨识结果与参考值对比,发现两种算法均能在2s 之内快速收敛到参考值附近,且滤波得到的状态量与仿真数据吻合较好,说明算法可靠性高且收敛快,具备飞机结冰在线探测的能力。在此基础上利用不同测量噪声统计特性的仿真数据,评估测量噪声对两种算法辨识精度的影响,经分析发现随着测量噪声标准差取值增大,扩展卡尔曼滤波辨识结果精度明显降低,而 H ∞算法的辨识精度变化较小,说明扩展卡尔曼滤波辨识精度依赖于噪声先验信息的准确性,而 H ∞算法不依赖于噪声先验信息,即使数据质量较差,H ∞算法也能得到精度相当的辨识结果。