基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服原始图割算法在用户选定的像素种子点较少情况下,目标边界容易出现错分这一现象,本文提出了基于 K-means 和图割(Graph cut,GC)算法相结合的交互式 K-均值图割(K-means and graph cut,KMGC)算法,对脑部核磁共振图像(Magnetic resonance image,MRI)进行交互式操作,该算法通过K-means聚类,对脑部MRI的灰度不均匀性进行了处理,在此基础上,再使用图割算法进一步对脑部MRI进行细化,从而达到有效地分割脑白质和脑灰质的目的。本文分别在仿真和真实的脑部MRI数据上进行了大量的实验,分别从定量分析和定性分析两个角度对实验结果进行了分析,并与其他分割算法进行了对比,对比实验结果标明,KMGC算法能够有效地对脑部 MRI 进行分割,并在分割效果上优于其他算法。
推荐文章
Regional Merge K-means图像分割算法及其质量评价
图像分割
聚类算法
RegionalMergeK-means(RMK)
质量评价
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于变异的k-means聚类算法
聚类
mk-means算法
变异
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-means和图割的脑部MRI分割算法
来源期刊 数据采集与处理 学科 工学
关键词 图割 交互式 核磁共振图像 K-均值
年,卷(期) 2016,(5) 所属期刊栏目
研究方向 页码范围 974-982
页数 9页 分类号 TP391
字数 4630字 语种 中文
DOI 10.16337/j.1004-9037.2016.05.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 元昌安 广西师范学院计算机与信息工程学院 121 1400 21.0 33.0
2 覃晓 广西师范学院计算机与信息工程学院 44 249 7.0 13.0
3 廖剑平 南宁学院信息工程学院 6 13 2.0 3.0
4 田换 广西师范学院计算机与信息工程学院 3 13 3.0 3.0
5 刘致锦 广西师范学院计算机与信息工程学院 6 13 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (112)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(1)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(15)
  • 参考文献(1)
  • 二级参考文献(14)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
图割
交互式
核磁共振图像
K-均值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导