基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对人脸姿态分类问题,本文提出了一种基于深度学习与融入梯度信息的人脸姿态分类学习方法。首先提取人脸姿态图像灰度与灰度差组合特征,然后通过三层受限玻尔兹曼机(Restricted Boltz-mann machines,RBM)对大量样本的特征进行融合训练学习,提取反映人脸姿态内涵的深度学习特征。最后通过Softmax分类器建立深度学习特征与人脸姿态标签的对应关系。在对 CAS-PEAL-R1人脸数据库进行学习和分类检测中,获得普遍高于95%的分类精度。
推荐文章
基于深度学习的人脸姿态分类方法
姿态分类
级联
深度学习
卷积神经网络
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
基于迁移学习的人脸姿态分类方法
人脸姿态分类
卷积神经网络
特征提取
迁移学习
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习与融入梯度信息的人脸姿态分类检测
来源期刊 数据采集与处理 学科 工学
关键词 人脸姿态分类 深度学习 受限玻尔兹曼机
年,卷(期) 2016,(5) 所属期刊栏目
研究方向 页码范围 941-948
页数 8页 分类号 TP391
字数 5168字 语种 中文
DOI 10.16337/j.1004-9037.2016.05.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 欧宗瑛 大连理工大学机械工程学院 95 1311 22.0 30.0
2 苏铁明 大连理工大学机械工程学院 32 459 13.0 21.0
3 程福运 大连理工大学机械工程学院 1 4 1.0 1.0
4 韩兆翠 济南大学机械工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (58)
参考文献  (16)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸姿态分类
深度学习
受限玻尔兹曼机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
论文1v1指导