作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于风电功率时间序列的非线性非平稳性特征,将一种基于集合经验模态分解(EEMD)和相关向量机(RVM)的预测模型引入到风电功率实时预测中.首先对风电功率时间序列采用集合经验模态分解,降低序列的非平稳性;其次对各子序列建立相关向量机预测模型;最后将得到的各子序列预测结果叠加就得到最终的功率预测值.利用该方法对吉林省某风电场进行功率预测,研究表明,该文所提出的预测模型能有效地提高预测精度,对工程有较高的利用价值.
推荐文章
基于经验模态分解和支持向量机的短期风电功率组合预测模型
经验模态分解
支持向量机
风速
短期风电功率预测
组合预测模型
基于经验模态分解法优化支持向量机模型的日前风电功率组合预测
经验模态分解
支持向量机
风电功率
组合预测
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
基于EEMD-IGSA-LSSVM的超短期风电功率预测?
集合经验模态分解
风功率预测
最小二乘向量机
改进引力搜索算法
指数径向基核函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于集合经验模态分解和相关向量机的风电功率实时预测研究
来源期刊 太阳能学报 学科 工学
关键词 风电功率 功率预测 集合经验模态分解 相关向量机
年,卷(期) 2016,(5) 所属期刊栏目
研究方向 页码范围 1093-1099
页数 7页 分类号 TM614
字数 4050字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨茂 东北电力大学电气工程学院 66 549 13.0 20.0
2 张强 东北电力大学电气工程学院 15 86 8.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (202)
参考文献  (3)
节点文献
引证文献  (9)
同被引文献  (19)
二级引证文献  (4)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
2020(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
风电功率
功率预测
集合经验模态分解
相关向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
总被引数(次)
77807
相关基金
国家留学基金
英文译名:
官方网址:http://www.csc.edu.cn/gb/
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导