基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
面向特定领域文本分类的实际应用,存在大量样本相互掺杂的现象,使其无法线性表述,在SVM中引入核函数可以有效地解决非线性分类的问题,而选择不同的核函数可以构造不同的 SVM,其识别性能也不同,因此,选择合适的核函数及其参数优化成为 SVM 的关键。本文基于单核核函数的性质,对多项式核函数与径向基核函数进行线性加权,构建具有良好的泛化能力与良好的学习能力的组合核函数。仿真实验结果表明,在选择正确参数的情况下,组合核函数SVM的宏平均准确率、宏平均召回率及宏平均综合分类率都明显优于线性核、多项式核与径向基核,而且能够兼顾准确率与召回率。
推荐文章
面向审计领域的短文本分类技术研究
审计问题分类
审计领域
信息增益
SVM决策树
短文本分类
审计报告
基于SVM主动学习技术的 PU 文本分类
支持向量机
主动学习
PU
文本分类
Rocchio
一种改进的多项式核支持向量机文本分类器
支持向量机
多项式核
条件正定核
文本分类
朴素贝叶斯算法和SVM算法在Web文本分类中的效率分析
Web分类系统
朴素贝叶斯算法
SVM算法
效率分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 组合核函数SVM在特定领域文本分类中的应用
来源期刊 计算机系统应用 学科
关键词 SVM 组合核函数 文本分类 多分类
年,卷(期) 2016,(5) 所属期刊栏目
研究方向 页码范围 124-128
页数 5页 分类号
字数 5604字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘芳 东北石油大学计算机与信息技术学院 23 49 4.0 6.0
2 吕洪艳 东北石油大学计算机与信息技术学院 27 76 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (12)
参考文献  (8)
节点文献
引证文献  (14)
同被引文献  (17)
二级引证文献  (15)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(7)
  • 引证文献(7)
  • 二级引证文献(0)
2019(14)
  • 引证文献(4)
  • 二级引证文献(10)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
SVM
组合核函数
文本分类
多分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导