原文服务方: 计算机应用研究       
摘要:
针对在线boosting跟踪算法在目标外观发生大幅度变化以及遮挡时易产生漂移导致目标丢失问题进行了研究,提出一种尺度自适应在线鲁棒目标跟踪算法。算法基于目标灰度或彩色直方图统计特征构建权重图像,通过对权重图像的矩特征分析,可以实现对目标尺度的自适应调整;同时该算法引入半监督学习策略,很好地解决了由于在线学习导致的跟踪失败问题。实验结果表明,该算法很好地解决了遮挡、目标外观和尺度变化时的鲁棒跟踪问题。与EM-shift、MIL和SPT三种算法相比,跟踪成功率以及鲁棒性均有所提高。
推荐文章
基于DWT的自适应在线聚类运动目标提取方法
离散小波变换
像素聚类
背景重构
运动目标提取
基于基础颜色特征的自适应尺度的多目标跟踪算法
基础颜色特征
自适应尺度因子
多目标跟踪
颜色命名过程
主成分分析
基于动态神经网络的鲁棒自适应跟踪
动态神经网络
仿射非线性系统
鲁棒自适应跟踪
基于相关滤波的尺度自适应目标跟踪
尺度计算
目标跟踪
相关滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 尺度自适应在线鲁棒目标跟踪
来源期刊 计算机应用研究 学科
关键词 在线boosting 半监督学习 尺度自适应 权重图像 目标跟踪
年,卷(期) 2016,(4) 所属期刊栏目 图形图像技术
研究方向 页码范围 1245-1248,1261
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2016.04.063
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张东波 湘潭大学信息工程学院 72 505 12.0 19.0
5 颜霜 湘潭大学信息工程学院 3 4 1.0 2.0
6 秦海 湘潭大学信息工程学院 3 4 1.0 2.0
7 王俊超 湘潭大学信息工程学院 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (15)
参考文献  (11)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (6)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
在线boosting
半监督学习
尺度自适应
权重图像
目标跟踪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导