原文服务方: 成都大学学报(自然科学版)       
摘要:
为了完成复杂场景中的长期视觉跟踪任务,解决尺度变化、外观变化和跟踪失败等问题,提出了一种双模型融合的长期跟踪算法.首先,将稀疏核相关滤波模型和颜色模型得到的跟踪响应进行自适应融合,构成更具鲁棒性的跟踪结果;然后,利用响应最大值来判断目标跟踪是否成功,并通过随机抽样学习用于在跟踪失败情况下重新检测目标的CUR滤波器,实现长期跟踪.在大规模基准数据集上的实验结果表明,算法在效率、准确性和鲁棒性方面优于现有相关跟踪算法.
推荐文章
基于双模型融合的自适应目标跟踪算法
目标跟踪
相关滤波
HS直方图
尺度金字塔
自适应融合
自适应模型更新的多特征融合目标跟踪算法
目标跟踪
特征融合
粒子滤波
自适应观测模型
高斯方差
机动目标自适应跟踪算法研究
信息处理技术
机动目标模型
统计模型
自适应跟踪
模糊自适应机动目标跟踪算法
机动目标跟踪
自适应滤波
卡尔曼滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自适应融合的长期目标跟踪算法
来源期刊 成都大学学报(自然科学版) 学科
关键词 长期跟踪 稀疏相关滤波 颜色模型 自适应融合
年,卷(期) 2019,(3) 所属期刊栏目 信息科学与工程
研究方向 页码范围 281-286
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1004-5422.2019.03.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘巧玲 成都大学信息科学与工程学院 15 19 3.0 4.0
2 刘一达 成都大学信息科学与工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (16)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
长期跟踪
稀疏相关滤波
颜色模型
自适应融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
成都大学学报(自然科学版)
季刊
1004-5422
51-1216/N
16开
1982-01-01
chi
出版文献量(篇)
1947
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导