基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
该文研究了将卷积神经网络应用在树叶识别方面,并通过卷积过程对图片进行可视化。实验表明,卷积神经网络应用在树叶识别达到了92%的识别率。另外,将此神经网络与支持向量机进行比较研究,从试验中可以得出,卷积神经网络在无论是精度方面还是速度方面都要优于支持向量机,可见,卷积神经网络在树叶识别方面具有很好的应用前景。
推荐文章
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于三维卷积神经网络的动作识别算法
卷积神经网络
三维卷积
人体姿态估计
动作识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的树叶识别的算法的研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 树叶识别 支持向量机 卷积神经网络
年,卷(期) dnzsyjsxsb_2016,(4) 所属期刊栏目
研究方向 页码范围 194-196
页数 3页 分类号 TP18
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 应文豪 常熟理工学院计算机科学与工程学院 16 36 3.0 5.0
2 许振雷 常熟理工学院计算机科学与工程学院 2 2 1.0 1.0
3 杨瑞 常熟理工学院计算机科学与工程学院 2 2 1.0 1.0
4 王鑫春 常熟理工学院计算机科学与工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (21)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(4)
  • 参考文献(4)
  • 二级参考文献(0)
1995(4)
  • 参考文献(4)
  • 二级参考文献(0)
1998(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
树叶识别
支持向量机
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导