基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种树叶分类方法.在数据方面,所获得数据既包含树叶的图形信息数据,也包含树叶的纹理信息.在前期数据预处理阶段,采用主成分分析方法对原始数据进行降维处理,从16个特征中提取出3个主成分,且累计主成分贡献率达到85%以上.在后期数据分析处理阶段,用支持向量机对树叶数据进行分类预测,并用粒子群算法对支持向量机参数进行寻优处理,提高分类精度.实验结果表明,相对于遗传算法和网格搜索法寻到的最优参数相比,粒子群算法优化支持向量机具有最高的准确率,高达94.1%,高于其他两种分类方法.
推荐文章
基于小波变换和PSO-SVM的表面肌动作模式分类
表面肌电信号
小波变换
粒子群优化算法
支持向量机
基于改进PSO-SVM算法的电能质量扰动分类
支持向量机(SVM)
小波变换
粒子群算法(PSO)
电能质量
分类
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
基于多重分形和PSO-SVM的齿轮箱故障诊断
齿轮箱
分形理论
多重分形
PSO-SVM
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主成分分析和PSO-SVM的树叶分类方法研究
来源期刊 数学的实践与认识 学科
关键词 主成分分析 粒子群算法 支持向量机 树叶分类
年,卷(期) 2016,(18) 所属期刊栏目 应用
研究方向 页码范围 170-175
页数 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 白艳萍 中北大学理学院 124 639 13.0 19.0
2 胡红萍 中北大学理学院 79 243 9.0 12.0
3 杨志辉 中北大学理学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (660)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (10)
二级引证文献  (6)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(8)
  • 参考文献(0)
  • 二级参考文献(8)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
主成分分析
粒子群算法
支持向量机
树叶分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数学的实践与认识
半月刊
1000-0984
11-2018/O1
16开
北京大学数学科学学院
2-809
1971
chi
出版文献量(篇)
15632
总下载数(次)
52
总被引数(次)
67673
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导