基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在人脸图像识别中人脸图像数据中有很多是稀疏的,对于稀疏数据的降维是流形学习算法面临的一个问题。为了有效地从高维图像数据中提取人脸图像的敏感信息,提高人脸识别的速度,文章提出了一种基于流形学习的有监督稀疏排列的局部保持投影算法(SSLPP)的极端学习机(ELM)。
推荐文章
基于离散余弦变换和稀疏表示的人脸识别
人脸识别
离散余弦变换
稀疏表示
词袋
局部特征
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于核稀疏表示的人脸人耳融合识别算法的研究
融合识别
核稀疏表示
特征提取
加权串联融合
正交匹配追踪算法
鲁棒性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏排列的 LPP 和 ELM 的人脸识别
来源期刊 微型机与应用 学科 工学
关键词 流形学习 极端学习机
年,卷(期) 2016,(23) 所属期刊栏目 图像与多媒体
研究方向 页码范围 42-45
页数 4页 分类号 TP18
字数 2239字 语种 中文
DOI 10.19358/j.issn.1674-7720.2016.23.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闫德勤 辽宁师范大学计算机与信息技术学院 124 1071 15.0 28.0
2 楚永贺 辽宁师范大学计算机与信息技术学院 10 26 3.0 5.0
3 王博林 辽宁师范大学数学学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (7)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
流形学习
极端学习机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导