基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
用户关系是目前微博研究的热门方向,微博用户亲密度评价在对用户隐含亲密粉丝的发现、微博网络环境优化等方面具有重要意义。目前微博用户群体庞大且关系复杂,仅从用户自身出发,以用户特征和关系网络等为依据对用户关系亲密度评价的准确率太低。针对这一问题,提出基于 LDA 的微博用户粉丝亲密度评价模型。首先,对用户粉丝集中非活跃粉丝过滤剔除,获取其活跃粉丝。然后,利用 LDA 主题模型对用户某时间段所发微博集进行训练,获取用户阶段性微博的主题分布;同时通过主题分布推断其兴趣取向分布,并利用余弦相似方法计算用户与其粉丝之间的兴趣相似度。最后,结合用户的背景相似度和关系紧密度,为用户建立综合的亲密度评价标准。通过新浪 API 接口抓取微博近期相关数据,组成实验数据集。在数据集上基于评价的推荐实验结果表明,所提出的模型方法具有较高的准确率和有效性。
推荐文章
基于权重微博链的改进LDA微博主题模型
短文本
主题挖掘
微博链
潜在狄利克雷分布
perplexity
基于用户特征属性的微博话题关键用户挖掘
关键用户
微博用户排序
时间属性
用户交互
基于行为和社团的微博用户传播影响力分析
关系
行为
社团结构
影响力
微博网络
LDA模型在微博用户推荐中的应用
主题模型
潜在狄利克雷分配
微博
用户模型
兴趣分析
用户推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于 LDA 的微博用户粉丝亲密度评价模型
来源期刊 计算机应用与软件 学科 工学
关键词 亲密度 LDA 粉丝 主题模型 相似度
年,卷(期) 2016,(10) 所属期刊栏目 应用技术与研究
研究方向 页码范围 67-71
页数 5页 分类号 TP3
字数 6637字 语种 中文
DOI 10.3969/j.issn.1000-386x.2016.10.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄青松 昆明理工大学信息工程与自动化学院 91 265 9.0 12.0
3 刘利军 昆明理工大学信息工程与自动化学院 77 196 7.0 10.0
4 冯旭鹏 昆明理工大学教育技术与网络中心 34 77 5.0 7.0
7 俞浩亮 昆明理工大学信息工程与自动化学院 2 6 2.0 2.0
8 王秋森 昆明理工大学信息工程与自动化学院 2 6 2.0 2.0
9 徐浩诚 昆明理工大学信息工程与自动化学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (235)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (14)
二级引证文献  (10)
1951(1)
  • 参考文献(0)
  • 二级参考文献(1)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(9)
  • 引证文献(0)
  • 二级引证文献(9)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
亲密度
LDA
粉丝
主题模型
相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导