基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视觉显著性检测是很多计算机视觉任务的重要步骤,在图像分割、自适应压缩和识别物体方面都有很重要的应用。提出了一种基于HSV颜色、纹理特征和空间位置关系相结合的显著性检测算法。该方法先将图像分割成小的图像片以获取图像的局部信息,结合图像片颜色的独特性和空间分布的紧凑性计算得到颜色显著图;同时利用Gabor滤波器对图像进行不同尺度和方向地滤波得到纹理特征向量,然后对特征向量计算纹理差异得到纹理显著图;最后将二者结合得到最终显著图。实验结果表明,该方法在检测效果和抗噪能力等方面均可获得较为满意的结果。
推荐文章
基于颜色和纹理特征的显著性检测算法
模式识别
显著性检测
颜色对比度
纹理特征
二维信息熵
基于全局颜色对比的显著性目标检测
全局颜色对比
显著性图
条件随机场
显著性目标检测
一种基于图像特征稀疏约束的显著性检测算法
显著性检测
特征选择
特征融合
稀疏约束
线性回归
基于颜色和运动空间分布的时空显著性区域检测算法
时空一致性优化
颜色的空间分布
运动的空间分布
时空显著性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于颜色和纹理的显著性目标检测算法
来源期刊 计算机工程与应用 学科 工学
关键词 显著性检测 图像分块 HSV颜色空间 纹理特征 目标检测
年,卷(期) 2016,(19) 所属期刊栏目 图形图像处理
研究方向 页码范围 192-195
页数 4页 分类号 TP391.4
字数 3616字 语种 中文
DOI 10.3778/j.issn.1002-8331.1412-0255
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘坤 上海海事大学信息工程学院 23 86 6.0 9.0
2 王成 上海海事大学信息工程学院 4 14 1.0 3.0
3 丁祖萍 上海海事大学信息工程学院 2 13 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (4)
参考文献  (7)
节点文献
引证文献  (13)
同被引文献  (45)
二级引证文献  (2)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
显著性检测
图像分块
HSV颜色空间
纹理特征
目标检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导