基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对可变形部件模型的复杂性使其在检测车辆时速度慢的问题,对可变形部件模型进行了改进。一方面使用加权PCA对可变形部件模型的基础HOG特征进行降维来减少模型参数;另一方面将HOG特征层组合后,使用快速傅里叶变换(FFT)把滤波器与HOG特征层的卷积转换为频域乘积,来降低计算复杂度。仿真实验结果表明,改进的可变形部件模型在进行车辆检测时检测精度和召回率都与原始模型相当,但检测速度大幅提升,在UIUC和BIT两个数据集上的平均耗时分别仅占原始模型平均耗时的29.6%和26.3%。
推荐文章
基于可变形部件模型的安全头盔佩戴检测
目标检测
可变形部件模型
梯度方向直方图
局部二值模式
支持向量机
基于可变形部件模型的台标识别方法
台标识别
可变形部件模型
方向梯度直方图
隐式支持向量机
隐式线性判别分析
颜色直方图
加权部件
基于可变形部件改进模型的夜间车辆检测方法
可变形部件模型
Gamma预处理
WPCA特征降维
显著性区域检测
自适应权重
基于改进可变形部件模型与判别模型的葡萄叶片检测与跟踪
机器视觉
图像处理
模型
葡萄叶片
检测
跟踪
可变形部件模型
判别模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 车辆检测中可变形部件模型的改进与应用
来源期刊 计算机工程与应用 学科 工学
关键词 可变形部件模型 车辆检测 加权主成分分析 特征层组合
年,卷(期) 2016,(20) 所属期刊栏目 图形图像处理
研究方向 页码范围 209-213
页数 5页 分类号 TP391
字数 4276字 语种 中文
DOI 10.3778/j.issn.1002-8331.1601-0057
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于凤芹 江南大学物联网工程学院 143 708 12.0 18.0
2 陈莹 江南大学物联网工程学院 101 401 10.0 14.0
3 康珮珮 江南大学物联网工程学院 3 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (4)
二级引证文献  (4)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
可变形部件模型
车辆检测
加权主成分分析
特征层组合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导