基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对船舶交通流预测中存在复杂性、非线性、受限因素多等特点,运用果蝇优化算法,建立了优化的广义回归神经网络船舶交通流预测模型.通过利用果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,从而实现对船舶交通流的预测.以东海大桥的船舶流量观测数据为实例对象进行分析,通过MATLAB进行仿真预测,实验结果表明:FOA-GRNN模型相比于传统的GRNN模型和BPNN模型具有更高的预测精度和泛化能力,有效地解决了预测过程中数据样本少、非线性拟合能力差等问题,对水路的规划、通航管理等方面具有一定的应用价值.
推荐文章
优化的长山水道船舶交通流量灰色系统预测模型
水路运输
船舶交通流量
灰色预测
GM(1,1)优化模型
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
船舶交通流量预测的灰色神经网络模型
船舶交通量
灰色模型
神经网络
基于非凸低秩稀疏约束的船舶交通流量预测
船舶交通流量
预测
非凸优化
交替方向乘子法
广义迭代阈值算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FOA优化GRNN的船舶交通流预测模型
来源期刊 微型机与应用 学科 工学
关键词 船舶流量 果蝇算法 参数优化 预测 广义回归神经网络
年,卷(期) 2016,(12) 所属期刊栏目 技术与方法
研究方向 页码范围 81-83
页数 3页 分类号 TP391.9
字数 2388字 语种 中文
DOI 10.19358/j.issn.1674-7720.2016.12.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄洪琼 上海海事大学信息工程学院 28 117 6.0 9.0
2 钮浩东 上海海事大学信息工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (33)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (7)
二级引证文献  (9)
1996(5)
  • 参考文献(2)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
船舶流量
果蝇算法
参数优化
预测
广义回归神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导