基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
主要研究基于深度神经网络的话者确认方法。在训练阶段,以语音倒谱特征参数作为输入,说话人标签作为输出有监督的训练DNN;在话者注册阶段,从已训练的DNN最后一个隐藏层抽取与说话人相关的特征矢量,称为d-vector,作为话者模型;在测试阶段,从测试语音中抽取其d-vector与注册的话者模型相比较然后做出判决。实验结果表明,基于DNN 的话者确认方法是可行的,并且在噪声环境及低的错误拒绝率的条件下,基于DNN的话者确认系统性能比i-vector基线系统性能更优。最后,将两个系统进行融合,融合后的系统相对于i-vector基线系统在干净语音和噪声语音条件下等误识率(EER)分别下降了13%和27%。
推荐文章
一种基于深度神经网络的基音检测算法
基音检测
深度神经网络
监督学习
维特比算法
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
一种基于深度卷积神经网络的车辆颜色识别方法
深度学习
卷积神经网络
颜色识别
智能交通
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于深度神经网络的话者确认方法
来源期刊 计算机应用与软件 学科 工学
关键词 话者确认 深度神经网络 深度学习
年,卷(期) 2016,(6) 所属期刊栏目 人工智能与识别
研究方向 页码范围 159-162
页数 4页 分类号 TP3
字数 3609字 语种 中文
DOI 10.3969/j.issn.1000-386x.2016.06.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李辉 中国科学技术大学电子科学与技术系 214 1637 20.0 32.0
2 吴明辉 中国科学技术大学电子科学与技术系 4 9 2.0 3.0
3 胡群威 中国科学技术大学电子科学与技术系 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (17)
二级引证文献  (11)
2000(3)
  • 参考文献(3)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
话者确认
深度神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导