作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
微博作为当下最受欢迎的社交网络之一,包含了大量的用户需求和兴趣偏好信息,如何动态地从微博内容中提取用户的需求和偏好信息,将推荐算法结合社交网络产生推荐结果,解决信息过载的问题,目前暂时还没有相关的较为成熟的应用。本文设计并实现了基于社交网络的物品推荐系统,提取用户微博内容关键词作为用户需求特征,建立物品信息库,通过文本相似度计算用户需求和物品信息之间的匹配度,采用基于内容的推荐算法产生推荐结果。最后进行离线实验,对推荐系统产生的推荐结果进行评测分析。
推荐文章
融合社交网络与关键用户的并行协同过滤推荐算法
社交网络
并行化
关键用户
协同过滤
大数据
电影推荐
基于社交用户标签的混合top-N推荐方法
推荐系统
协同过滤
社交网络
个性化标签
冷启动
社交网络用户行为挖掘研究进展与展望
社交网络
数据挖掘
用户行为
一种基于位置社交网络的地点推荐算法
地点推荐
用户相似度
用户签到
社交影响
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于社交网络的用户需求发现与物品推荐
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 社交网络 用户需求 基于物品推荐算法 微博
年,卷(期) 2016,(8X) 所属期刊栏目
研究方向 页码范围 260-262
页数 3页 分类号 TP391.3
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林梦迪 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
社交网络
用户需求
基于物品推荐算法
微博
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导