作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Digit Recognition is an essential element of the process of scanning and converting documents into electronic format. In this work, a new Multiple-Cell Size (MCS) approach is being proposed for utilizing Histogram of Oriented Gradient (HOG) features and a Support Vector Machine (SVM) based classifier for efficient classification of Handwritten Digits. The HOG based technique is sensitive to the cell size selection used in the relevant feature extraction computations. Hence a new MCS approach has been used to perform HOG analysis and compute the HOG features. The system has been tested on the Benchmark MNIST Digit Database of handwritten digits and a classification accuracy of 99.36% has been achieved using an Independent Test set strategy. A Cross-Validation analysis of the classification system has also been performed using the 10-Fold Cross-Validation strategy and a 10-Fold classification accuracy of 99.26% has been obtained. The classification performance of the proposed system is superior to existing techniques using complex procedures since it has achieved at par or better results using simple operations in both the Feature Space and in the Classifier Space. The plots of the system’s Confusion Matrix and the Receiver Operating Characteristics (ROC) show evidence of the superior performance of the proposed new MCS HOG and SVM based digit classification system.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 MCS HOG Features and SVM Based Handwritten Digit Recognition System
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 Handwritten DIGIT Recognition MNIST Benchmark Database HOG ANALYSIS Multiple-Cell Size HOG ANALYSIS SVM Classifier 10-Fold Cross-Validation CONFUSION Matrix Receiver Operating Characteristics
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 21-33
页数 13页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Handwritten
DIGIT
Recognition
MNIST
Benchmark
Database
HOG
ANALYSIS
Multiple-Cell
Size
HOG
ANALYSIS
SVM
Classifier
10-Fold
Cross-Validation
CONFUSION
Matrix
Receiver
Operating
Characteristics
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导