基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A novel approach to optimizing any given mathematical function, called the MOdified REinforcement Learning Algorithm (MORELA), is proposed. Although Reinforcement Learning (RL) is primarily developed for solving Markov decision problems, it can be used with some improvements to optimize mathematical functions. At the core of MORELA, a sub-environment is generated around the best solution found in the feasible solution space and compared with the original environment. Thus, MORELA makes it possible to discover global optimum for a mathematical function because it is sought around the best solution achieved in the previous learning episode using the sub-environment. The performance of MORELA has been tested with the results obtained from other optimization methods described in the literature. Results exposed that MORELA improved the performance of RL and performed better than many of the optimization methods to which it was compared in terms of the robustness measures adopted.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
倒立摆的Reinforcement Learning模糊自适应控制
单级倒立摆
Reinforcement Learning
模糊自适应控制
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
Concentration-discharge patterns of weathering products from global rivers
Concentration-discharge
Rivers
Silicate weathering
Solutes
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Novel Approach Based on Reinforcement Learning for Finding Global Optimum
来源期刊 最优化(英文) 学科 医学
关键词 REINFORCEMENT LEARNING MATHEMATICAL Function Global OPTIMUM Sub-Environment ROBUSTNESS Measures
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 65-84
页数 20页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
REINFORCEMENT
LEARNING
MATHEMATICAL
Function
Global
OPTIMUM
Sub-Environment
ROBUSTNESS
Measures
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
最优化(英文)
季刊
2325-7105
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
65
总下载数(次)
0
总被引数(次)
0
论文1v1指导