基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在短时交通流预测中,传统PSO优化神经网络预测模型对逃逸粒子直接取边界值且自身无相应的变异机制,这对于维持粒子群多样性、寻找最优解是不利的.为更进一步提高短时交通流预测精度,将在传统PSO优化BP神经网络的基础上,引入边界变异算子、自变异算子对粒子进行双重变异以优化网络配置参数.用实测的北京二环交通流数据对改进的预测模型进行验证,结果表明该模型更有利于搜寻全局最优解,且寻优时间更短,能有效改善短时交通流预测性能.
推荐文章
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于混沌粒子群算法的神经网络短时交通流预测
交通流量
预测
混沌粒子群
神经网络
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
基于小波分析与神经网络的交通流短时预测方法
小波分析
小波神经元网络
交通流
短时预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进PSO优化神经网络的短时交通流预测
来源期刊 计算机工程与应用 学科 工学
关键词 短时交通流预测 预测模型 反向传播(BP)神经网络 粒子群优化算法(PSO) 双重变异
年,卷(期) 2017,(14) 所属期刊栏目 工程与应用
研究方向 页码范围 227-231,245
页数 6页 分类号 TP301.6
字数 5125字 语种 中文
DOI 10.3778/j.issn.1002-8331.1601-0400
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张军 天津大学电气与自动化工程学院 90 705 14.0 23.0
2 朱新山 天津大学电气与自动化工程学院 15 122 6.0 10.0
3 王远强 天津大学电气与自动化工程学院 2 23 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (183)
参考文献  (11)
节点文献
引证文献  (18)
同被引文献  (70)
二级引证文献  (25)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(8)
  • 参考文献(1)
  • 二级参考文献(7)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(6)
  • 引证文献(5)
  • 二级引证文献(1)
2019(27)
  • 引证文献(9)
  • 二级引证文献(18)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
短时交通流预测
预测模型
反向传播(BP)神经网络
粒子群优化算法(PSO)
双重变异
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导