基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The paper proposes a new method of dynamic VaR and CVaR risk measures forecasting. The method is designed for obtaining the forecast estimates of risk measures for volatile time series with long range dependence. The method is based on the heteroskedastic time series model. The FIGARCH model is used for volatility modeling and forecasting. The model is reduced to the AR model of infinite order. The reduced system of Yule-Walker equations is solved to find the autoregression coefficients. The regression equation for the autocorrelation function based on the definition of a long-range dependence is used to get the autocorrelation estimates. An optimization procedure is proposed to specify the estimates of autocorrelation coefficients. The procedure for obtaining of the forecast values of dynamic risk measures VaR and CVaR is formalized as a multi-step algorithm. The algorithm includes the following steps: autoregression forecasting, innovation highlighting, obtaining of the assessments for static risk measures for residuals of the model, forming of the final forecast using the proposed formulas, quality analysis of the results. The proposed method is applied to the time series of the index of the Tokyo stock exchange. The quality analysis using various tests is conducted and confirmed the high quality of the obtained estimates.
推荐文章
VaR与CVaR的对比研究及实证分析
风险价值(VaR)
条件风险价值(CVaR)
投资组合
优化算法
基于VaR和CVaR风险度量的发电商竞价策略
电力市场
竞价策略
风险价值
条件风险价值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Method of Dynamic VaR and CVaR Risk Measures Forecasting for Long Range Dependent Time Series on the Base of the Heteroscedastic Model
来源期刊 智能控制与自动化(英文) 学科 数学
关键词 DYNAMIC VaR CVAR Forecasting Long RANGE DEPENDENCE Hurst PARAMETER Heteroscedastic MODEL
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 126-138
页数 13页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DYNAMIC
VaR
CVAR
Forecasting
Long
RANGE
DEPENDENCE
Hurst
PARAMETER
Heteroscedastic
MODEL
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能控制与自动化(英文)
季刊
2153-0653
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
250
总下载数(次)
0
总被引数(次)
0
论文1v1指导