基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对钨离子交换穿漏时间频繁检测、检测滞后、相对误差大、工人劳动强度大的问题,基于神经网络学习预测的思想和结合钨冶炼厂实际生产情况,以交前液的pH值、波美度、电导率、流速为输入量,以穿漏时间为输出量,建立最小二乘法支持向量机(LS-SVM)穿漏时间预测模型,并用粒子群算法(PSO)选取核参数γ和误差惩罚参数c.仿真分析表明该模型能够很好地对离子交换穿漏时间进行预测,预测精度高,最大绝对误差为8 min,最大相对误差为1.5385%,符合钨离子交换工艺要求,可取代人工检测,降低工人劳动强度,减少钨资源浪费,有利于实现整个离子交换过程的自动控制.
推荐文章
基于PSO滚动优化的LS-SVM预测控制
非线性模型预测控制
非线性建模
最小二乘支持向量机
粒子群算法
PSO优化LS-SVM在模拟电路故障预测中的应用
LS-SVM
PPMCC
欧几里得距离
健康度
PSO
基于微粒群算法的LS-SVM时间序列预测
支持向量机
微粒群算法
时间序列预测
超平面空间
基于LS-SVM的装备需求时间序列预测
支持向量机
时间序列
混沌
相空间
嵌入维数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO优化LS-SVM的钨离子交换穿漏时间预测研究
来源期刊 中国钨业 学科 工学
关键词 钨离子交换 穿漏时间 最小二乘法支持向量机 粒子群算法
年,卷(期) 2017,(2) 所属期刊栏目 机械·自动化
研究方向 页码范围 60-64
页数 5页 分类号 TF302|TF351.2
字数 2686字 语种 中文
DOI 10.3969/j.issn.1009-0622.2017.02.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘飞飞 江西理工大学电气工程与自动化学院 65 133 6.0 8.0
2 朱朋克 江西理工大学电气工程与自动化学院 3 5 2.0 2.0
3 伍伊军 江西理工大学电气工程与自动化学院 3 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (29)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(13)
  • 参考文献(1)
  • 二级参考文献(12)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
钨离子交换
穿漏时间
最小二乘法支持向量机
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国钨业
双月刊
1009-0622
11-3236/TF
大16开
江西赣州经济开发区迎宾大道62号赣州有色冶金研究所301室
1986
chi
出版文献量(篇)
2035
总下载数(次)
3
论文1v1指导