作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
[目的]探寻一种有效预测股票价格变化趋势的方法.[方法]在指数平滑异同移动平均线(MACD)指标中加入市场活跃程度(ACT)、波动率(VOL)、离差值(DIF)趋势程度3个指标来构建股票价格变化趋势预测模型.采用热点图对MACD策略中的参数以及股票进行选择、融合,并运用技术分析工具、支持向量机(SVM)与相关向量机(RVM)等机器学习方法对MACD策略中产生的交易信号进行优化,筛选特征变量.[结果]将设计的股票价格变化趋势预测策略的数据换成A股全市场数据并进行回测,发现近10年的年化收益率(14.8%)胜过沪深300指数(7.201%),而且使用A股全市场的数据有效避免了幸存者的偏差.[结论]优化改进的股票价格变化趋势预测模型可以在一定程度上预测股票上升的趋势,有效规避风险.
推荐文章
数据多维处理LSTM股票价格预测模型
长短期记忆网络
股价预测
组合模型
萤火虫算法
最小二乘支持向量机
基于分型布朗运动的股票价格趋势预测
布朗运动
分型布朗运动
蒙特卡洛模拟
正态性检验
股票价格
基于情感分析和GAN的股票价格预测方法
股票价格预测
情感分析
卷积神经网络
生成对抗网络
基于DMD-LSTM模型的股票价格时间序列预测研究
动态模态分解
长短期记忆神经网络
模态特征
板块联动效应
市场背景
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化MACD模型的股票价格变化趋势预测方法
来源期刊 广西科学院学报 学科 工学
关键词 股票价格 量化交易 机器学习
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 65-70
页数 6页 分类号 TP181
字数 4623字 语种 中文
DOI 10.13657/j.cnki.gxkxyxb.20170320.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨永洁 广西大学计算机与电子信息学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (13)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(4)
  • 参考文献(0)
  • 二级参考文献(4)
2019(2)
  • 参考文献(0)
  • 二级参考文献(2)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
股票价格
量化交易
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西科学院学报
季刊
1002-7378
45-1075/N
大16开
广西南宁市大岭路98号
1982
chi
出版文献量(篇)
1934
总下载数(次)
0
总被引数(次)
9503
论文1v1指导